Periodicity and Stability in Nonlinear Neutral Dynamic Equations with Infinite Delay on a Time Scale

نویسندگان

  • ABDELOUAHEB ARDJOUNI
  • AHCENE DJOUDI
چکیده

Let T be a periodic time scale. We use a fixed point theorem due to Krasnoselskii to show that the nonlinear neutral dynamic equation with infinite delay x(t) = −a(t)x(t) + (Q(t, x(t− g(t))))) + ∫ t −∞ D (t, u) f (x(u)) ∆u, t ∈ T, has a periodic solution. Under a slightly more stringent inequality we show that the periodic solution is unique using the contraction mapping principle. Also, by the aid of the contraction mapping principle we study the asymptotic stability of the zero solution provided that Q(t, 0) = f(0) = 0. The results obtained here extend the work of Althubiti, Makhzoum and Raffoul [1].

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Periodicity and Stability in Neutral Nonlinear Dynamic Equations with Functional Delay on a Time Scale

Let T be a periodic time scale. We use a fixed point theorem due to Krasnosel’skĭı to show that the nonlinear neutral dynamic equation with delay x(t) = −a(t)x(t) + (Q(t, x(t), x(t− g(t))))) +G ` t, x(t), x(t− g(t)) ́ , t ∈ T, has a periodic solution. Under a slightly more stringent inequality we show that the periodic solution is unique using the contraction mapping principle. Also, by the aid ...

متن کامل

On time-dependent neutral stochastic evolution equations with a fractional Brownian motion and infinite delays

In this paper, we consider a class of time-dependent neutral stochastic evolution equations with the infinite delay and a fractional Brownian motion in a Hilbert space. We establish the existence and uniqueness of mild solutions for these equations under non-Lipschitz conditions with Lipschitz conditions being considered as a special case. An example is provided to illustrate the theory

متن کامل

Stability of two classes of improved backward Euler methods for stochastic delay differential equations of neutral type

This paper examines stability analysis of two classes of improved backward Euler methods, namely split-step $(theta, lambda)$-backward Euler (SSBE) and semi-implicit $(theta,lambda)$-Euler (SIE) methods, for nonlinear neutral stochastic delay differential equations (NSDDEs). It is proved that the SSBE method with $theta, lambdain(0,1]$ can recover the exponential mean-square stability with some...

متن کامل

Stability analysis of nonlinear hybrid delayed systems described by impulsive fuzzy differential equations

In this paper we introduce some stability criteria of nonlinear hybrid systems with time delay described by impulsive hybrid fuzzy system of differential equations. Firstly, a comparison principle for fuzzy differential system based on a notion of upper quasi-monotone nondecreasing is presented. Here, for stability analysis of fuzzy dynamical systems, vector Lyapunov-like functions are defined....

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016